
AlgoPath’s New Interface Helps You Find Your Way Through Common Algorithmic
Mistakes

Estelle Perrin
CReSTIC

IFTS - University of Reims Champagne-Ardenne
Charleville-Mézières, France
estelle.perrin@univ-reims.fr

Sébastien Linck

IFTS - University of Reims Champagne-Ardenne
Charleville-Mézières, France
sebastien.linck@univ-reims.fr

Abstract—This paper presents the new interface of our
serious game AlgoPath and its related interactions. AlgoPath
helps students learn algorithmic. The virtual world represented
in AlgoPath is all linked to the business of road construction
and people running along these roads: objects students interact
with are 3D figures, houses (huts and suburban houses), boxes,
a crane, a concrete mixer and a bus station. This paper
shows that AlgoPath helps students avoid common mistakes
they can make while learning algorithmic. The entire interface
is dedicated to help them conceptualize and understand the
rules of algorithmic and programming. Whenever it is possible,
AlgoPath reminds students of these rules and corrects the
mistakes.

Keywords-3D-based training; education; algorithmic; ludic
teaching

I. INTRODUCTION

When we first presented AlgoPath last year [1], we
introduced the reasons why we had wanted it to be im-
plemented: it was a necessity to have an entertainment
computer program in which students could learn algorithmic
but every single computer program we had looked into
was simply an improved imitation of flowcharts. To renew
interest, motivation, and enjoyment while learning, we had
to achieve a virtual world in which students could create
any algorithm they wanted. But to resemble video games, it
had to be a world so we had spent time thinking of what
a good concept of an algorithm could be. We had focused
on how a variable should look like and had decided to turn
it into a 3D white figure carrying a backpack that contains
a value. In AlgoPath, a 3D white figure runs on a stone
path. A path shape is related to the algorithmic statement it
represents: linear when it is an assignment, forked when it
is a conditional statement and circular when it is a loop.

During this year, we carried out a survey to show if
students liked or disliked AlgoPath. Fifty students were
quizzed. They came from different courses of studies - a
half from under-graduate courses dedicated to websites; the
other from scientific general under-graduate courses - but
all had to attend a course dedicated to algorithmic. One
hundred percent of students said they were thrilled to learn

Figure 1. AlgoPath’s old interface. Only the big buttons at the bottom can
be selected.

algorithmic with a game but sixty-five percent said the
interface (see Figure 1) was neither ergonomic nor ludic.

They were right because AlgoPath was only a proto-
type implemented to validate the concepts, and we had
not focused on the interface as we should have. So, the
interface objects were succinct: ten big buttons displayed at
the bottom of the window to create the basic statements
of algorithms. Furthermore, to see the body statements
of a loop or a conditional, students had to click on the
corresponding bush along the stone path. Then the window
completely changed and only showed statements of the loop
or the conditional. Because the interface acted in that way,
the students could no longer keep the whole concept in mind
and were confused.

In this paper, we present the new interface of AlgoPath.
This interface was designed (1) to avoid common mistakes
students can do while learning how to create algorithms for
the first time and (2) to navigate through a one and only
world. The related works (see section II) show that a serious
game interface must be close to a video game interface to
be efficient. They also show that serious games can help to
learn methods and rules proposed by a class. Section III is

188Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



Figure 2. AlgoPath’s new interface.

dedicated to the new interface of AlgoPath and the common
mistakes it avoids. Section IV concludes the paper and shows
how the evolution of AlgoPath might be.

II. RELATED WORKS

We can find many works on serious games. We will focus
on three interesting characteristics of this kind of games: the
creativity developed by the gamer, the graphical interface
and environment of the game, and the usefulness of it.

A. Creativity

Serious games are made to learn something. Students can
either acquire knowledge about courses studied at school or
validate this knowledge with serious games.

Some are just made up of questions about the subject
taught at school. A Quiz [2] or a maze with a range of issues
related to a specific topic, [3] or [4], do not bring any part
of creativity in the game. This first type of serious game has
no creative part, it is more or less like school exams. Some
of these games are labelled ”serious games” only because
of their simplified interface and their childish presentation,
although it is no real support for learning whatsoever.

But on the other hand, some games develop a kind of
interaction between the learner and the game, where the
learner is involved in creating the game: for example series
of actions by the player to create a solution to advance
the storyline. The game does not only serve to check the
acquisition of knowledge but actually allows the student to
learn the concepts through play like: see [5] in physics,
see [6] to learn problem-solving or see [7] in mechanical
engineering. In [5] the authors show that the creativity
increases when the player can share his creation with other
players .

B. Interface

Serious games are first of all games, and so visual
representation and interactions between the player and the
interface of the game are very important. So, for people who
play serious games, a game must be attractive in its form

and in its way of learning. Today all the most played video
games work in a 3D environment. If a serious game wants
to be interesting for children or students, it has to be close
to a classic game visual.

Questioning games are classically in only two dimensions.
But some of them use 3D interface to interact with the
player. These 3D-games are often made in 3D because of
the subject of the game: geography [8] or architecture [9],
but some are just made in 3D to have a better interface for
collaboration between players [10]. Some serious games are
just serious scenarii based on a commercially available video
games [11], [12]. For example in [12], they use Tycoon City:
New York R© and SimCity Societies R© games to learn daily
economics and global issues.

But all these 3D interfaces and interactions do not frame
the learning.

C. Usefulness

Many papers have been written about the utility of games
in education. Whatever the age of the students, the learning
with serious game is equivalent to that done in a master
course[13]. For [14], serious games are no obstacle to
students’ success. From primary school to high school, the
enjoyment to play [15] and, so to learn, is a good indicator
of the usefulness of serious games.

To be effective, a serious game must be a game as
well as a teaching aid. In that respect, teachers must be
given a special training to be able to use serious games
properly[16]. Then, if both teachers and learners use the
game in the right way, then the game itself will gain in
efficiency as well as in usefulness.

We have presented many serious games, some of which
allow the students to get interested in discovering ans
learning new subjects. We will next show how the new
interface of AlgoPath promotes the learning of algorithmic.

III. ALGOPATH’S NEW INTERFACE

AlgoPath’s interface was totally rethought in order to
simplify the navigation and to help students avoid most
of the common mistakes they can make while they learn
algorithmic. The world within witch students can play is
divided into five zones. The first one is the stone path.
This zone represents the algorithm being built and it evolves
gradually when students interact with the environment. The
second one is a group of five houses. While interacting in
this zone, students can create variables. AlgoPath provides
five basic data types: integers, floats, Booleans, strings
and characters. The third zone is the construction zone.
Students can create aggregate or composite data type, used
to represent entities that are described by multiple attributes
of potentially different types. Students can create statements
and they can build the prototype of a function or a procedure.
The fourth zone is the bus station. This zone is dedicated

189Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



to the simulation of the execution of the algorithm. And
the fifth zone is the variables area. The latter is missing in
Figure 2. because it is related to the memory usage and at
the beginning there is no variable declared.

In the next sections, we describe the last four areas in de-
tails. The first one (the algorithm zone) was fully described
in our previous paper [1] but, as the bush statements world
totally replaced the main statements world when the user
wanted to focus on the bush statements, we include a section
in this paper in which we explain how we changed that.

A. Algorithm Zone

Figure 3. Level 0 and level 1 open.

In AlgoPath, a bush is a sequence of statements that
describes actions to be performed. Replacing a world with
another when students clicked on a bush to see its relative
statements was not satisfying. Students could not locate
themselves in the levels of decomposition of the algorithm.
In this new version of AlgoPath, whenever students want to
focus on statements of an else-part, a then-part, a loop, a
function or a procedure, AlgoPath adds a new floor above
the mother statement (see Figure 3). In that way, students
do keep in mind the all concept. But, since a conditional
statement can lead to two sequences of statements of the
same level, AlgoPath does not allow to open more than one
floor at a given level. Therefore, each opened floor of a
superior level has to be closed before another floor can be
opened.

B. Urban Zone

In the urban zone (see Figure 4) AlgoPath provides
five basic data types: integers, floats, Booleans, strings and
characters. Each data type has its own hut. The population

Figure 4. Urban zone.

of integer variables lives in the integer hut. The name of
the data type is on the top of the hut and can be easily
seen by students. Students can click on a hut as they would
knock at a door and then trigger a variable. Clicking on a
hut is one of the only few things students can do at the
beginning of a session with AlgoPath (apart from creating a
new composite data type; creating the prototype of a function
or a procedure; and adding an output statement).

AlgoPath requires a name to declare a variable. If the
name is the same as the one of an existing variable, AlgoPath
declines the declaration and alerts students a variable has
already been declared with this name. Just like in program-
ming, words separated by a space are not accepted.

C. Memory Zone

The memory zone shows each declared variable. As seen
in [1], a standing 3D figure personifies a variable. In this new
version it stands on a pedestal whose colour is the same as
the roof of the hut the 3D figure belongs to. A 3D red figure
means the variable has not been assigned a value yet.

Figure 5. Two kinds of 3D figures.

Two kinds of 3D figures can stand on the memory zone
(see Figure 5). A small and a little overweight one represents
a basic data type variable; on the contrary, a tall and thin
one represents an aggregate or composite data type variable.
If students click on a tall and thin 3D figure, it opens a floor
above it, with the 3D figures corresponding to the members

190Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



of the composite or aggregate type, just as a new floor opens
when students click on a bush.

D. Construction Zone

In the construction zone, students can find boxes (to create
statements), a concrete mixer (to create new prototypes of
functions or procedures), a crane (to create an aggregate
data type), and a dustbin (to delete things). Each object
is dedicated to an interaction described in the following
sections.

1) Concrete mixer: If students click on the concrete
mixer, Algopath helps them go through the creation of
the prototype of a function or a procedure. When writing
algorithm on a sheet of paper, students often forget syntax
or are embarrassed deciding if they have to write a procedure
or a function. According to our rules, if a module has only
arguments by value and one result then it is a function.
In any other case, we ask students to write a procedure
(meaning a mix of arguments by value and by reference
with zero or at least two results). First AlgoPath asks them
if it is a function or a procedure that will be created. The
name of the module is then required and AlgoPath launches
the process of creating arguments. An argument is totally
defined by its name and its type. AlgoPath lets students
choosing the name but it automatically suggests the set of
the available data types. So, students cannot specify a data
type they have not already defined. But when you define a
procedure in a programming language, you have two choices
regarding how arguments are passed to it: by reference or
by value. In AlgoPath, you have three choices: by input, by
output, and by input-output. Passing by input refers to a way
of passing arguments where the value of an argument in the
calling function cannot be modified in the called function.
Passing by output refers to a way where an argument has no
value in the calling function prior to the called function, but
the called function has to assign it a value. Passing by input-
output refers to a way of passing arguments where the value
of an argument in the calling function can be modified in
the called function. There is a distinction between argument
by input-output and argument by output because we want
students to be aware that an argument by reference may not
be assigned a value when it reaches the called procedure.
If students want to create a procedure with zero or several
arguments by input and only one argument by output then
AlgoPath warns them that it should be a function instead of
a procedure and adds it as a function.

Once the prototype of the module is defined, a new box
appears in the construction zone. This new box is selectable.
If students select it then a new floor opens in AlgoPath. It
shows the - empty - body of the module. Next to the stone
path where statements will be added, there is a zone that
looks like the memory zone of the main algorithm. Instead
of showing the main variables, it shows the arguments of
the module. Visible features (see Figure 6) help the students

Figure 6. Three kinds of arguments (from left to right: by input, by output
and by input-output).

recognize if it is an argument by input, by output or by input-
output. An argument by input is a 3D white figure in front
of which is a padlock. It means this variable was assigned a
value and this value cannot change. An argument by output
is a 3D red figure. It means it has not been assigned a
value yet. An argument by input-output is a 3D white figure
without a padlock. It means it has already been assigned a
value and this value can change.

When students add an assignment statement in the body
of a procedure, AlgoPath suggests them the set of variables
available. Arguments by input are not included in this set. It
is a little bit restrictive regarding programming, but it helps
them understand that an argument by input cannot change
its value.

2) Crane: Clicking on the crane launches the creation
of composite data types. Students can create arrays or
structures. An array is a set of consecutive variables of
a same type. A structure is a collection of one or more
variables, possibly of different types, grouped together under
a single name for convenient handling. The variables named
in a structure are usually called members. Students have
to specify the types of cells of an array and the members
of a structure. AlgoPath helps them with this process by
suggesting the data types available. That is how AlgoPath
avoids common typing mistakes made by students - writing
a data type that does not exist or wrongfully writing a
data type that actually exists. But it also helps the students
understand that the most inner data types must be created
first. If a person structure has to be created - which we will
assume has a name and a date of birth - the date structure
has to be created first. Naming an array, a structure and its
members is another process students have to go through.
AlgoPath verifies the integrity of the names. Naturally,
a structure member and an ordinary (i.e., non-member)
variable can have the same name without conflict, since they
can always be distinguished by context.

3) Boxes: The construction zone contains seven boxes.
Each box creates a new statement in the path of AlgoPath.

191Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



Figure 7. The seven boxes to create statements.

Figure 7 shows the seven boxes. The lower row contains -
from left to right - a box to create an assignment, a box
to create an input statement, a box to create an output
statement, a box to create a conditional statement and a
box to create a loop. Since these five statements were fully
described in [1], this section will focus on the last two boxes:
the one with a receiver and a ”F” and the one with a receiver
and a ”P”. But let’s just add that anytime the name of a
variable is required, AlgoPath suggests a set of proper names
available. To fully explain AlgoPath does not only check the
names of the variables declared, it also computes the names
of the variables of basic data types because one of our rules
is that a variable of aggregate data type cannot be assigned a
value. For example, if the variable P is declared as a person,
that is a structure with two members - a name and a date of
birth - whose names are ”name” and ”date” and, if a date is
a structure with three members named month, day and year
then AlgoPath suggests the following set of names: P.name,
P.date.month, P.date.day and P.date.year. P and P.date do
not belong to this set because they are composite data type
variables.

The upper row left box creates a function calling state-
ment, while the right box creates a procedure calling state-
ment. These creations can occur within two contexts. The
prototype of the function or the procedure may be already
defined or not. If it is, AlgoPath helps students by notifying
the arguments of the module and their status: by input, by
output and by input-output. For each, it reminds students if
they can associate a value or a variable of the calling module.
Naturally, AlgoPath acts differently whether an argument of
the module is exclusively by input or not. If it is, AlgoPath
lets students choose if they will associate a value - an
expression - or a variable. If it is not, AlgoPath only shows
variables of the same data type of the calling module. If
there is none, AlgoPath cancels the process of creating a new
statement and explains why. Then students learn they first
have to create variables in the calling module if they want to
put results in them. If the prototype is not defined, AlgoPath
asks questions so the students are able to define the calling
arguments of the module. First, it asks what the name of the
module is. Then it asks if students want to add an argument.
If they do, it wants to know if the argument is a value or a

variable. In case it is a value, the argument is automatically
defined by input. In case it is a variable, students can choose
if it is by input, by output or by input-output. At the end
of the process, the prototype of the module is automatically
created and a new box is added in the construction zone.

Figure 8. Visible features of calling arguments (colors and backpacks).

As mentioned in [1], there are visible features to tell the
arguments apart. But in this version of AlgoPath, a calling
argument by output is red while a calling argument by input-
output is white (see Figure 8).

4) Dustbin: In the construction zone, there is a large
commercial refuse bin. It opens when students click on it
if a statement has already been added. Otherwise it does
nothing. It closes when students choose the statement they
want to delete.

E. Bus Station Zone

The bus station zone is under construction so we won’t
talk much about it. This zone is dedicated to the execution
of an algorithm. We expect a lot from this zone because
normally students have to wait for the implementation of
algorithms in a chosen programming language to discover
the execution. Let’s just say a bus will drive along the path
of AlgoPath to pick up the 3D figures (see Figure 9).

Figure 9. Execution.

192Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions



The interface will act accordingly: for example, gates
will open or close, 3D figures will tell the content of
their backpacks, etc. Moreover, when students click on the
printer, AlgoPath shows them the algorithm writing with
conventional declarations and statements.

IV. CONCLUSION AND FUTURE WORK

[1] presented the different 3D objects to represent the
concepts of algorithms. A survey showed that students were
not satisfied with the interface. The latter was too dour and
even though students were able to avoid some grammatical
mistakes, the computer program did not prevent them all
and did not teach students why they were about to make
mistakes. The new version of AlgoPath now implements
those features. With AlgoPath, students can no longer:

• Add a statement if it is not an output statement before
a variable is declared;

• Add a variable in a R-value of an assignment if it was
neither declared nor assigned a value;

• Assign a value to an aggregate or composite data type
variable;

• Try to assign a variable if it was not declared;
• Forget or add the calling parameters of a module: the

number of calling parameters are always equal to the
parameters of the module;

• Associate a parameter of a prototype with a calling
parameter of a different type;

• Use a composite data type if it is not declared;
• Forget what the basic data types are;
• Declare a variable if AlgoPath does not know the type;
• Forget what statements they can use;
• Assign a value that does not match the type of the

variable.
Moreover, when students are about to make a mistake

and AlgoPath is able to notice it, AlgoPath explains why
it is a mistake and corrects it. In the future, we will focus
on adding Object-oriented programming concepts such as
objects, classes, data abstraction, encapsulation, polymor-
phism, and inheritance. We will also study the possibilities
to add distributed algorithms and programming concepts.

ACKNOWLEDGMENT

We thank Dimitry Zekrouf, Nicolas Fleurentin, and Sonny
Jestin for their valuable help during the study and the
implementation of this new version of AlgoPath.

REFERENCES

[1] E. Perrin, S. Linck, and F. Danesi, “Algopath: A new way
of learning algorithmic,” in The Fifth International Confer-
ence on Advances in Computer-Human Interactions, Valencia,
Spain, 2012.

[2] W. Barendregt and T. M. Bekker, “The influence of the level
of free-choice learning activities on the use of an educational
computer game,” Computers and Education, vol. 56, no. 1,
pp. 80–90, 2011.

[3] M. Virvou and G. Katsionis, “On the usability and likeability
of virtual reality games for education: The case of vr-engage,”
Computers and Education, vol. 50, no. 1, pp. 154–178, 2008.

[4] M. Papastergiou, “Digital game-based learning in high school
computer science education: Impact on educational effec-
tiveness and student motivation,” Computers and Education,
vol. 52, no. 1, pp. 1–12, 2009.

[5] D. B. Clark, B. C. Nelson, H.-Y. Chang, M. Martinez-
Garza, K. Slack, and C. M. D’Angelo, “Exploring newtonian
mechanics in a conceptually-integrated digital game: Compar-
ison of learning and affective outcomes for students in taiwan
and the united states,” Computers and Education, vol. 57,
no. 3, pp. 2178–2195, 2011.

[6] C.-C. Liu, Y.-B. Cheng, and C.-W. Huang, “The effect of
simulation games on the learning of computational problem
solving,” Computers and Education, vol. 57, no. 3, pp. 1907–
1918, 2011.

[7] B. Coller and M. Scott, “Effectiveness of using a video game
to teach a course in mechanical engineering,” Computers and
Education, vol. 53, no. 3, pp. 900–912, 2009.

[8] H. Tuzun, M. Yilmaz-Soylu, T. Karakus, Y. Inal, and
G. Kizilkaya, “The effects of computer games on primary
school students’ achievement and motivation in geography
learning,” Computers and Education, vol. 52, no. 1, pp. 68–
77, 2009.

[9] W. Yan, C. Culp, and R. Graf, “Integrating bim and gaming
for real-time interactive architectural visualization,” Automa-
tion in Construction, vol. 20, no. 4, pp. 446–458, 2011.

[10] R. Hamalainen, “Designing and evaluating collaboration in a
virtual game environment for vocational learning,” Computers
and Education, vol. 50, no. 1, pp. 98–109, 2008.

[11] D. Charsky and W. Ressler, “”games are made for fun”:
Lessons on the effects of concept maps in the classroom use
of computer games,” Computers and Education, vol. 56, no. 3,
pp. 604–615, 2011.

[12] Y.-T. C. Yang, “Building virtual cities, inspiring intelligent
citizens: Digital games for developing students’ problem
solving and learning motivation,” Computers and Education,
vol. 59, no. 2, pp. 365–377, 2012.

[13] M. Ebner and A. Holzinger, “Successful implementation of
user-centered game based learning in higher education: An
example from civil engineering,” Computers and Education,
vol. 49, no. 3, pp. 873–890, 2007.

[14] L. A. Annetta, J. Minogue, S. Y. Holmes, and M.-T. Cheng,
“Investigating the impact of video games on high school stu-
dents’ engagement and learning about genetics,” Computers
and Education, vol. 53, no. 1, pp. 74–85, 2009.

[15] F.-L. Fu, R.-C. Su, and S.-C. Yu, “Egameflow: A scale to
measure learners’ enjoyment of e-learning games,” Computers
and Education, vol. 52, no. 1, pp. 101–112, 2009.

[16] D. J. Ketelhut and C. C. Schifter, “Teachers and game-based
learning: Improving understanding of how to increase efficacy
of adoption,” Computers and Education, vol. 56, no. 2, pp.
539–546, 2011.

193Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-250-9

ACHI 2013 : The Sixth International Conference on Advances in Computer-Human Interactions

View publication stats

https://www.researchgate.net/publication/235987996



